

Mission Information

Location: Huludao City, Liao Ning, China Measured area: 800mx1000m (0.8 sq.km) Camera: Sony DLSR ILCE-5100, E20mm UAV: Fixed-wing drone Flight details: 200m AGL, 6 flight strips, 132 images, 1:500 mapping demand Ground control points: 14 points, with 1 point for every 3 baselines and every flight route

00241 DSC00247 SC0 DSC00282 0028psc00327_DSC003 DSC00328 DSC00310 DSC00403 DSC00402 DSC00405 DSC0044 DSC00433 00481 DSC0048

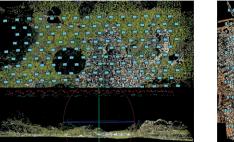
GCP Information

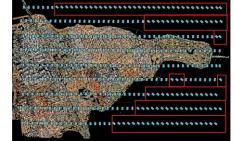
14 ground control points to layout in advance

GCP layout

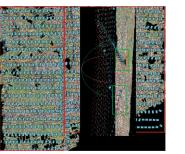
Accuracy Report Summary

X-direction max. difference: 0.0484m (PT5) Y-direction max. difference: 0.0255m (PT13) Z-direction max. difference: 0.0904m (PT14) For all the checked points, horizontal RMSE 0.0235m and vertical RMSE 0.0805m, both <10cm. The result meets 1:500 mapping demand.

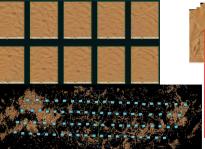

GCP coordinates


14			
PT1	405704, 754	4521412,634	366, 024
PT2	405564, 102	4521393,833	362, 542
PT3	405466, 174	4521366.66	362, 453
PT4	405157,065	4521267, 397	360, 597
PT5	405351,641	4521435.012	365, 061
PT6	405362, 53	4521519, 296	365, 490
PT7	405204, 912	4521583, 918	345, 775
PT8	405138.072	4521404, 21	365, 006
PT9	405244, 107	4521544, 845	260, 962
PT10	405424, 20	4521405, 203	342, 328
PT11	405451,964	4521464, 719	363, 472
PT12	405601 623	4521495.99	364, 333
PT13	405543,974	4521427, 202	364, 192
PT14	4055.04.77	4521712 542	364.029

Accuracy Report

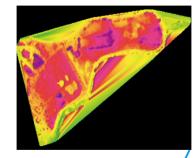

	Information]: ated]: 07/06/19		e Combined Bundle	ingue cadity and		
LDate Cre	ated]: 07/06/15	14:25:24				
[rms of o	observation val	lue and re-project	ion]: 0.003215	0.003217		
[interior	precision of p evation]:13	points]: 13 [plane]:0 [e	levation]0			
PT1	405704,7540	4521412,4740	364, 0240	0.1218	-6.0152	-0.0050
PT10	401424, 2014	4521405.2000	342.3284	0.0174		0.0246
PT11 PT12	405451, 9640	4522404, 7290	263, 4720 264, 1100		-1.0140	
PT12 PT13	altitud, of all	4525427, 2524				
PT14	applicate, Print	4531711 Salt				-0.0304
PT2	405544, 1020	4521290, 2020	342, 5420	0.0064		
PT3	405464, 2740	4523,764, 6600	342, 4539	-0.0009	0.0106	-0.0134
PT4	405157,0450	4521267.2970	265, 5979	0.0154	0.0249	
PT5 PT6	405751, 6610	#521475, 0120 #521514, 2060	205, 06210	-5,0404		-1.0754
PT7	405214, 1521	attraction, some		-0.0004		-0.0574
PT8	405135.0720	4525404,2500	245. 4064	-6,0000	-0.0079	0.0026
[minx]: [miny]:	-0.0004		L0484 (P L0255 (P	T5) T13)		
[minz]:	0.0026		10904 (P	T14)		
[rmsx]:	0.0189	[rmsy]:	0.0140	[rmsz]:	0.0770	
[rmsxy]:	0.0235	5				
[rms]:	0,0805					

OTHER CASES


Crisscrossed flight strips, 150 images

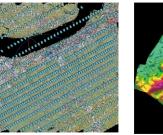
2 flights for 2 missions, 900 images

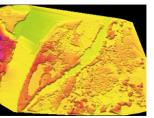
Plain data (Grass, village)

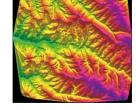


Tough case (deserts, with sparse textures)

SOUTH SURVEYING & MAPPING INSTRUMENT CO., LTD.


Target your success http://www.southsurvey.com http://www.southinstrument.com




Water area with POS only, no aerial triangulation point to match, 350 images

Water area processing

Typical examples (high mountains, high-density plantation, flatland and grassland, wide rivers, low-rise buildings)

Urban area + water area mapping (high-rise buildings, high-density plantation, wide rivers)

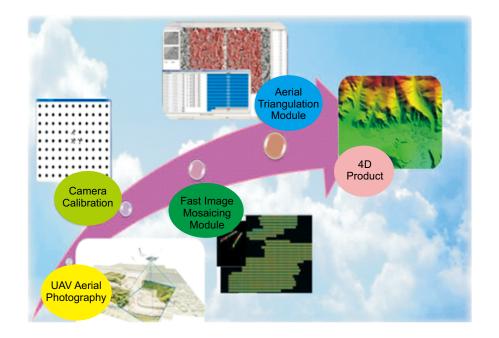
Mountain area mapping (high mountains with deep valleys and high-density plantation)

erial triangulation orientation points for DEM

High-density re-matching points for DEM

E-mail: mail@southsurvey.com export@southsurvey.com imexp@southsurvey.com euoffice@southsurvey.com

Data Processing Software for Unmanned Aerial Vehicle

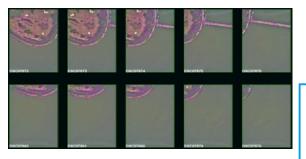


SkyPhoto

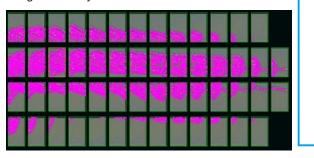
BRIEF INTRODUCTION

Originally derived from traditional aerial photogrammetry system, SkyPhoto is a professional package solution designed for transforming low-altitude aerial images into consistent and accurate points cloud, DEM (Digitized Elevation Modeling), DOM (Digitized Orthophoto Modeling) mosaics, etc. The software features sharply in not only one-key processing for workflow automation but also advanced settings and editable output options, specifically engineered to meet the demand of both specialists and beginners. The main functions include indoor camera calibration, dodging process, accuracy quality report, measurement tool, 3D modeling generation and browse, DLG (Digitized Line Graphics) production based on stereo image pair and so on, making SkyPhoto a sophisticated solution with accuracy, flexibility, usability and productivity.

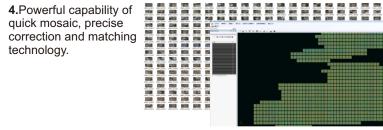
SYSTEM STRUCTURE

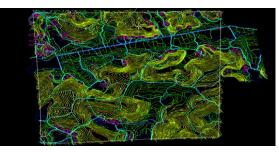


SYSTEM FEATURES

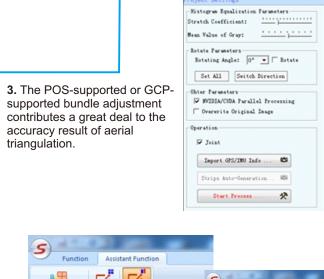

Sp.									
Fundon Acotectivation									
🗟 🍙 🛎 🛠 👔	N	🔹 🖏 🖷	2 60	1 m	i.	Щ. ч.	12	0	
	Industry CEM CEM			and have	Canadianda			11/10/000	
Processing Transpulation Processing Adjustment of Area	Means Sampling Edd	Redity Mosail Crop DOM Develop	Modeling Brown	Brouse Adduct	4 Auto	Ontes Bround			
	Feet	Distortion	Infing Later	e Pyranid	Bakance	Dte			
Rotogram Epolicetion Faranciers	DRUMON DECOMAND	Tes.	141 10	1	Tes				
Paretak Coefficients	101,000 (11	1 en	Tes 10*	Tes.	Tex				
Res Falte of Grant	285,0005.014	Tes.	Tes 90*	2+4	Tes				
	200,000 JM	Tes.	Tes 10*	Tes	Des				
Botate Parameters	280,0000.004 280,0000.004	244	541 90" 541 90"	1++	Tex				
Between August 107 . The Battern	100,000,014 100,000,014	Tes .	Tes 90"	Ten .	Tes .				
Set All Seitch Birettion	20.005.04	In	In B*	Int	Tes.				
	DR. (015. (H	Tes	Tex 90*	Ten	Tes				
Other Parameters	280,0006.004	244	Tex 90*	7++	Tex				
	201,007.314	1es	Tes 90*	1	Ter				
T Descrite Brightad Beage	295,000 Jac	Tes .	Tes 90"	Tes .	Tes .				
Dentin .	281,010,124	Tes .	Tes 90*	Ten .	Tes				
	101,003,014	Tes.	Tes 80*	1	Tes				
lagart (PECON Info 10	196,002.04	Tex	Tes 90*	Tex	Tex				
Swips Antrinerstin. (8)	201,0023.jpg	Tes.	Tes 10*	Tes	Des				
Parties and commenciation. Not	285,803.314	245	Tex 90*	245	Tes.				
Dart Brann 🛠	100,005.014 100,003.014	Tes .	141 80" 141 -92"	Ten Ten	Tes .				
	201,000,000	les.	10 -92	144	Tes.				
· · · · · · · · · · · · · · · · · · ·	200 00 0 1 M	Tes.	10 -10	Ten	Tes				
	200,0214.194	244	Tes -90*	7+4	Tes				
	100,005 Jpc	Tes.	Tex -90 ⁴	Ten	Tes				
	286,000 Jpc	Tes.	Tes -90*	Tes	Tes				
	196,007.314 196,007.314	Ten .	Tes -907	1+1	Tes				
	200,0000.jpg	1++	5+1 -90 ²	2+1	Tes.				
	100,000 Jac	in the	10 -92	1es	Tes.				
	DB1_0001_014	Tes.	Iss -90*	Tes	Tes				
	196,0000.004	Tes	Tet -90*	7+5	Tes				
	290,0023.014	Tes.	Tes -90*	2+4	Des				
	291,0104.394 291,027.344	Tes .	In -92	Ten Ten	Tes .				
	201,005.04 201,005.04	les les	10 -10	les les	Tes.				
	196,0107,014	1	141 -97	144	Tes				
	101.000.00	Tes.	111 -90/	Tes	Tes				
	281,0025.014	Tex	Tes -90/	Tex	Tex				
	201,000 JM	1 es	Tes -90*	Ten	Tes				
	Display in the Bandi-O	Tes.	Sec. 0"	2+1	Des				
	190,000 /gc David-O 190,000 /gc David-O	144	Tes 0*	Tes Tes	Tes .				
	DRI, DHE JPA Danali 40 DRI, DHE JPA	les les	In B	1	Tes.				
	16,000.04	les.	Tet 90*	1	Ter				
	295,0243.194	Tes	7+1 90*	2+4	Des				
	190,0144.324	Tes	Tex 90*	Ten	Tes				
leath	Tel. 2105. 144	8.44	N.c. 667	W.1.1	¥				

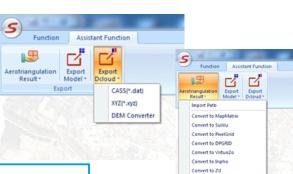
		Option		
1 SIFT	2 SIFT Match	3 Freenet	4 SBA	
Sift Detection	Sift Match	Freenet		
Access File	Geometry Check	Fixed Camera		


1. The parameter settings for aerial photogrammetry enjoy great flexibility, with manual intervention as well as default one-key operation, worry-free for non-professionals.


2. The intellectualized aerial triangulation algorithm satisfactorily deals with tough cases like images from unstable flight attitude (Kappa or Omega angle out of tolerance) and sparse textures, for example, deserts, large water area with just a little land, etc. The overlap percentage and rotating angle of images are very little restricted.

correction and matching technology.




5. This package features largely in keeping both functional versatilities and high efficiency at the same time and less time required when processing the same quantity of images compared with other software on the market. Images from multi-rotor drones with excellent flight stability (SkyWalker X61 highly recommended) would easily help you to obtain 1:500 DLG mapping.

Our software training would be very helpful for users to advance from traditional ground survey to aerial photogrammetry.

SKYSOLUTIONS

triangulation.

6.The system is compatible to other professional GIS or mapping software by exporting to universal data formats popular on the market

Export Report

Unlike simple modeling soft ware, SkyPhoto-super is a professional aerial photogrammetry solution that demands systematic operation and proficient expertise.

With independent intellectualized property rights, the software is available for format customization upon request.

The core algorithm, adopting pyramid

gradation method, is optional to match

POS data, photographic strips or all

precise aerial triangulation matching.

images, which provides effective and

bundleadjustment_SCBA_Camera_Result.scbacmr

bundleadjustment_SCBA_Photo_Result.scbaph bundleadjustment_SCBA_Point_Result.scbapts

bundleadiustment SCBA Processing.txt

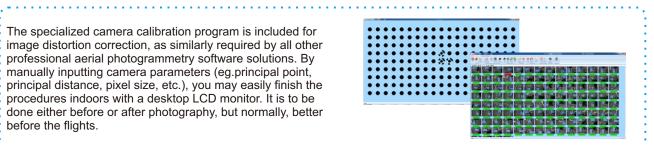
bundleadjustment_SCBA_Report.txt

bundleadiustment SCBA Residue.txt

efg.dat

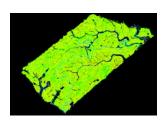
The specialized camera calibration program is included for image distortion correction, as similarly required by all other professional aerial photogrammetry software solutions. By manually inputting camera parameters (eg.principal point, principal distance, pixel size, etc.), you may easily finish the procedures indoors with a desktop LCD monitor. It is to be done either before or after photography, but normally, better before the flights.

2016/4/22 11:11 SCBACMR 文件

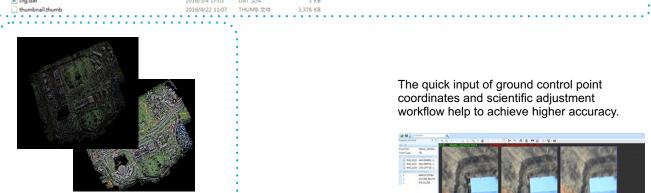

2016/4/22 11:11 SCBAPHT 文件 2016/4/22 11:11 SCBAPTS 文件

2016/4/22 11:11 文本文档

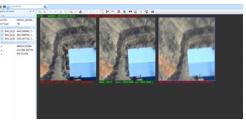
2016/4/22 11:11 文本文档


2016/4/22 11:11 文本文档

2016/5/4 17:03



Impressive deliverables (DEM, DOM, DLG, etc.) can be automatically generated, and further edited for higher quality outputs.



The POS-supported or GCP-supported bundle adjustment contributes a great deal to the accuracy result of aerial triangulation.

Millions of orientation points are attributed and even reach to hundreds of millions after densification. Instead of monochromatic points cloud, the colorful output, is more convenient for users to view and analyze the shape and properties of surface features. And you may browse the points cloud in the software like the way that you do with 3D laser scanner.

The quick input of ground control point coordinates and scientific adjustment workflow help to achieve higher accuracy.

High-precision POS data from airborne GNSS-RTK system successfully gets you to minimize the huge efforts in dealing with ground control points fieldwork, and you may go straight to adjustment then mapping without the GCP concern.